

Vol. 01, Issue 04, PP. 152-163

e.ISSN: 3090-6261

https://creativecommons.org/licenses/by-sa/4.0/

The Influence of Perceived Ease of Use and Perceived Usefulness on the Behavioral Intention of QRIS Users in Gorontalo

Fadel Muhammad ¹, Melan Angriani Asnawi ², Idris Yanto Niode ^{3*}

¹ Student of the Faculty of Economics, Gorontalo State University, Gorontalo, Indonesia

Email: fdellmhammad@gmail.com ¹

^{2,3} Lecture of the Faculty of Economics, University Negeri Gorontalo, Gorontalo, Indonesia Email: melan.asnawi@unq.ac.id ², idris niode@unq.ac.id ³,

*Corresponding Author Email: idris_niode@ung.ac.id

Received: October 18, 2025; Revised: October 25, 2025; Accepted: October 29, 2025

Abstract

Interoperability is a vital strategic component in the digital payment ecosystem in Indonesia, and QRIS is a concrete manifestation of this strategic project. This study aims to analyze the influence of Perceived Ease of Use (PEOU) and Perceived Usefulness (PU) on the Behavioral Intention of QRIS users. This study uses a quantitative approach with a survey method. The research sample consisted of 96 respondents who are QRIS users in Gorontalo City, determined through a purposive sampling technique. Data were collected using a Likert-based questionnaire, then analyzed using multiple linear regression using SPSS. The results show that PEOU and PU have a significant effect on the Behavioral Intention of QRIS users. In addition, both technology acceptance variables simultaneously drive Behavioral Intention with a significance value of 82.5%, indicating the significant influence of this technology acceptance among the Gorontalo community.

Keyword: Perceived Ease of Use, Perceived Usefulness, Behavioral Intention, ORIS.

1. Introduction

The development of electronic-based digital payment technology and non-cash transactions has experienced a very significant increase in the last 10 years in Indonesia (Zulfa & Syahnur, 2025). Bank Indonesia, as the main regulator in implementing the Indonesian Payment System Blueprint (BSPI), has become the basic framework for developing this digital technology infrastructure (Susilo, 2024). Interoperability is a vital strategic component in Indonesia's digital payment ecosystem, where QRIS is a concrete manifestation of this strategy. Standardization of the use of the National QR Code, which enables the interconnection of various payment service providers, is a major focus of current digital technology infrastructure development (Nada et al., 2021; Nandru et al., 2024). The open API approach advocated by Bank Indonesia also encourages the creation of a more integrated and efficient ecosystem (Jameaba, 2020). Since August 14, 2014, the Government of the Republic of Indonesia, together with Bank Indonesia, has strengthened the National Non-Cash Movement (GNNT) to raise public awareness of the use of noncash payment instruments. This program is aimed at creating a less cash society (LSC) culture, which means a significant reduction in the use of cash transactions (Setiawan et al., 2019). This led Bank Indonesia, as the regulator of payment systems in Indonesia, in August 2019 to launch a Shared Delivery Channel-based payment channel for server-based payment instruments, namely the Ouick Response Indonesia Standard (ORIS).

According to Kredina, (2021) that the current digital payment model requires a non-cash payment channel using QR Code and the follow-up of this program encourages business actors both large companies and MSMEs to provide many QR Codes in non-cash transactions that can be found on various e-wallet or e-banking platforms (Ahmad & Abdul Latif, 2022; Tanha et al., 2024). In other words, QRIS helps and

simplifies the payment process at a merchant through QR Code (Nisa & Adinugraha, 2024), where customers only need to scan the QR Code from a merchant to make buying and selling transactions through various payment applications that are widely available on smartphones.

This change in payment system requires good readiness and acceptance in terms of security and information systems at the user (Nabila et al., 2025), consumer (HM et al., 2023; Pakaja, 2025) and merchant levels (Rafferty & Fajar, 2022). TAM is a framework that can be used to understand how users accept and adopt new technologies (Gangwar et al., 2014; Taherdoost, 2018) that are widely used in mobile phone (Mugo et al., 2017), social media (Carlos Martins Rodrigues Pinho & Soares, 2011), online learning (Pakaja & Wafa, 2023), IoT (Alkhwaldi & Abdulmuhsin, 2022), or in the context of banking technology more broadly (reference). Although a report from BPS shows that Gorontalo experienced a significant increase in QRIS use in 2024, this growth has not yet had a direct impact on the community where several psychological, socio-cultural and individual behavioral factors often trigger the acceptance of this digital-based payment technology. This study aims to determine how the QRIS technology system's Perceived Ease of Use and Perceived Usefulness influence the Behavioral Intention of QRIS users in Gorontalo City.

This research is structured in six stages: stage one explains the background of the research and its objectives. Stage two explains the supporting theories and how the hypotheses were formulated. Stage three explains the research methods. Stage four discusses the results of the analysis and answers the research hypotheses. The final two sections of the research explain the impact of the research results. Section six concludes with conclusions, limitations, practical implications, and suggestions for future research.

2. The Art of Research

1. Theory TAM (Technology Acceptance Model Theory)

The Technology Acceptance Model (TAM) is a framework used to understand how users accept and adopt technology. TAM was developed in 1986 by Fred Davis in his doctoral thesis entitled "A Technology Acceptance Model for Empirically Testing New End-User Information Systems." This theory was built by Davis, Bangozzi, and Warshaw in 1986 as a model measure that can be used to analyze factors that influence the acceptance or use of a technology (Uzun et al., 2013). In TAM, the usefulness and ease of use of technology influence intention and actual use (Mugo et al., 2017; Tanha et al., 2024). Furthermore, Davis proposed the Theory of Reasoned Action (TRA) as the basis for the emergence of user responses through the measures of "Perceived Usefulness" and "Perceived Ease of Use" (Alkhwaldi & Abdulmuhsin, 2022; Carlos Martins Rodrigues Pinho & Soares, 2011; Gangwar et al., 2014) as the user's initial impression when enjoying a specific application system that is able to boost performance in a company's work (Lederer et al., 2000; Xia et al., 2018).

2. Perceived Usefulness

The Alkhwaldi & Abdulmuhsin, (2022) explains that Perceived Usefulness is a person's view that technology can improve their job performance (Omar et al., 2019). One important measure of this TAM theory shows that the more someone views a technology or system as useful for achieving a task or goal, the more likely they are to adopt and use it (Sun, 2012). In other words, if users believe the technology will help them work better or more efficiently, their perceived usefulness is high, which is a strong predictor of usage intentions and actual adoption (Gangwar et al., 2014). According to the Adams et al., (1992) and Omar et al., (2019), there are several indicators that can be used to measure Perceived Usefulness, for example: work more quickly, job performance, increase productivity, effectiveness, makes job easier and usefulness.

3. Perceived Ease of use

According to Carlos Martins Rodrigues Pinho & Soares, (2011) that explain that perceived ease of use is an individual's perception of the extent to which technology can help them in performing their tasks or achieving their goals. Furthermore, according to references that explain that Perceived ease of use is often influenced by the usefulness of technology and the technology's ability to meet user needs. Perceived ease of use involves the belief that technology or systems can be used easily and free from problems (Mugo et al., 2017). The level of intensity of use and user interaction with the system also reflects the level of ease of use (Kumar et al., 2004). According to Omar et al., (2019), there are several indicators that can be used

in measuring perceived ease of use, for example: easiness, clear and understandable, easy to learn, overall easiness.

4. Behavioral Intention

According to Ngan & Khoi, (2020), behavioral intention is the interest or desire to perform a behavior. Behavioral intention (BI) is not a behavior, because the behavior itself is carried out because the individual has an interest or desire to do it (Ajzen, 2020; Thalib et al., 2025). Perceived usefulness is the extent to which users believe that using technology will improve performance (Omar et al., 2019), while perceived ease of use means how easy it feels to use the technology (Ajzen, 2020; Sun, 2012). Both are different factors that influence user attitudes toward technology use, although perceived ease of use is also thought to influence perceived benefits and attitudes toward technology use (Mugo et al., 2017). According to (Srivastava & Singh, 2023), there are several indicators that can be used to measure this behavioral intention acceptance, for example: intention to use in the future, intention to always use daily, and intention to use repeatedly.

5. Hypothesis Development

The hypothesis regarding the influence of perceived ease of use on behavioral intention among QRIS users in Gorontalo City is rooted in a fundamental theory in technology adoption studies, namely the Technology Acceptance Model (TAM). According to this theoretical framework, users' beliefs about the ease of use of a technological system will significantly shape positive attitudes (Bhattacherjee & Premkumar, 2004), which ultimately trigger intentions to use it (Davis, 1993). Applied to the location context, this hypothesis assumes that when Gorontalo residents with a background in digital literacy and transaction habits perceive the scanning and payment process using QRIS as intuitive, uncomplicated, and efficient, this will encourage the formation of a strong behavioral intention to integrate QRIS into their financial activities. Thus, this level of perceived ease of use is suspected to be an important predictor of actual behavioral intentions to use QRIS (Ramayanti, 2024). Therefore, this study hypothesizes the following:

H1: Perceived ease of use is thought to have a significant influence on the Behavioral Intention of QRIS users in Gorontalo City.

Based on the Technology Acceptance Model (TAM), perceived usefulness is a user's belief that adopting a technology will improve performance or efficiency in their lives (Gefen et al., 2000; Karahanna & Straub, 1999). The hypothesis that perceived usefulness influences the behavioral intention of QRIS users in Gorontalo City is based on the idea that people's intention to continue using QRIS will be largely determined by the extent to which they perceive the technology's tangible benefits (HM et al., 2023; Ramayanti, 2024). If Gorontalo residents view QRIS as a useful tool, for example by making transactions faster, more practical without the need for cash, helping manage finances, or providing promotions and other conveniences, then this belief in benefits will form a positive attitude (Rahmalia et al., 2024; Ramayanti, 2024) which ultimately strengthens their intention to adopt and maintain the use of QRIS in their daily economic activities (Rahmalia et al., 2024). In short, the stronger the perceived benefits, the stronger the behavioral intention formed (Gupta et al., 2024). Therefore, this study hypothesizes as follows:

H2: Perceived Usefulness is thought to have a significant influence on the Behavioral Intention of QRIS users in Gorontalo City.

Based on the Technology Acceptance Model (TAM), perceived ease of use and perceived usefulness are two fundamental determinants that collectively shape behavioral intention (Isiaku & Adalier, 2024). The hypothesis that these two variables simultaneously influence the behavioral intention of QRIS users in Gorontalo City is based on the logic that people's behavioral intention is determined not only by the system's usefulness (Ramayanti, 2024), but also by its ease of use (Gupta et al., 2024). This means that even though Gorontalo residents find QRIS very useful (perceived usefulness) because transactions are faster and more practical, their intention to use it continuously may be hampered if the system is perceived as complicated or difficult to operate (perceived ease of use). Conversely, ease of use will drive initial acceptance, while perceptions of its benefits will crystallize this intention into a habit (Rahmalia et al., 2024). Thus, the combination of perceived ease of use and perceived benefits is thought to be the primary driver that synergistically influences the behavioral intention of QRIS users in Gorontalo City. Therefore, this study hypothesizes the following:

H3: Perceived ease of use and Perceived Usefulness are suspected to have a significant influence on the Behavioral Intention of QRIS users in Gorontalo City.

3. Method

This research was conducted in Gorontalo City where the number of Merchants serving the QRIS payment system continues to increase every year and the number is quite large, the population used in this study is all consumers who use QRIS with the provision of sampling using Cochran for the reason of determining the sample size with the minimum number required so that the research results have a good level of confidence and a relatively small margin of error value, in addition to the specific number of the proportion of the population of QRIS users whose total number is unknown. The sample determination formula is as follows:

$$n = \frac{(Za/2)^2 p. q}{e^2}$$

$$\pi = \frac{(1.96.0.25)^2}{0.05^2}$$
= 96.04 and rounded up to 96

Based on the calculations above, the sample size for this study was 96 respondents. Furthermore, the variable definition in this study consisted of two independent variables (PEOU and PU) and one dependent variable (behavior intention), with measurement provisions referring to previous studies. Data sources were obtained primarily by distributing questionnaires to QRIS users. Initial questions related to personal information were then validated regarding the number of QRIS users. The questionnaire was distributed online using a Google form, and the questionnaire link was shared with QRIS users via WhatsApp, both personal networks and groups. The measurement scale used a Likert scale, with a value of 1 indicating strongly disagree and 5 indicating strongly agree. Data analysis used multiple linear regression with the help of the IBM SPSS Statistics 31 program.

4. Result

A. Respondent Data Description

The data shown in Table 1 shows that the majority of respondents in this study were men with a total of 72 people or a percentage of 75%, followed by the majority of them were college students with a total of 43 students or 44.79% and self-employed with a total of 28 employees or a percentage of 29.27%. Furthermore, for the age range of the number of respondents were young people in the age range of 10 to 17 years totaling 63 people or a percentage of 65.6% and the age range between 18 to 25 people with a percentage of 27%. Finally, in the validation of QRIS use for payment activities, it was found that the majority of respondents used QRIS > 10 times a week and this indicates that respondents in this study are very familiar with and frequently use this payment technology. The description of these characteristics shows that active QRIS users in this study are teenagers belonging to the Gen Z generation who certainly have a fairly good ability to adapt to technology in accordance with current technological developments.

Table 1. Characteristics of Research Respondents

			•		
Information	Total	(%)	Information	Total	(%)
Gender			Age		
Woman	24	25	• 10-17 Years	63	65.6
Man	72	75	 18-25 Years 	26	27
Job			 25-40 Years 	7	7.2
 School Students 	1	1.04	Frequency QRIS		
 College School 	43	44.79	• < 5		
 Government Employees 	19	19.79	• < 5 • 5 – 10	17	17.7
 Private Employees 	5	5.21		33	34.4
 Self Employed 	28	29.27	• > 10	46	47.9

B. Research Instrument Testing

1. Validity Test

In this study, the validity test was conducted by comparing the calculated r value (r count) and the table r value. If the calculated r value is greater than the table r value, then the statement or indicator item is considered valid. The table r value can be determined by df (degree of freedom) = n - 2, where n is the number of samples. At a significance level of 0.05 with the number of samples used in this validity test amounting to 30 samples out of the 96 samples determined in this study, the table r value = 0.361 was obtained. The results of data processing for all research variables as shown in table 2 are known to have a calculated r value > r table (0.361) and thus all research variables are valid and pass for further testing.

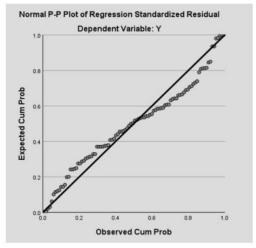
Table 2. Validity Test Results

Variables	Item	(r count)	Info	Variables	Item	(r count)	Info
Perceived Usefulness (X1) Perceived Ease of U					lse		
1. Speed Up	Q1	0.850	Valid	1. Convenience	Q1	0.767	Valid
Work	Q2	0.669	Valid		Q2	0.628	Valid
	Q3	0.883	Valid		Q3	0.875	Valid
2. Improve	Q1	0.601	Valid	2. Clear and	Q1	0.848	Valid
Performance	Q2	0.558	Valid	understandable	Q2	0.863	Valid
	Q3	0.796	Valid		Q3	0.685	Valid
3. Increase	Q1	0.903	Valid	3. Easy to learn	Q1	0.902	Valid
Productivity	Q2	0.699	Valid		Q2	0.747	Valid
	Q3 0.841 Valid	Q3	0.902	Valid			
4. Useful	Q1	0.845	Valid	4. Overall Convenience	Q1	0.864	Valid
	Q2	0.647	Valid		Q2	0.826	Valid
	Q3	0.808	Valid		Q3	0.919	Valid
5. Make Work	Q1	0.902	Valid				
Easier	Q2	0.747	Valid				
	Q3	0.902	Valid				
			Behavior	al Intention			
1. Motivation to	Q1	0.708	Valid	3. Motivate Other	Q1	0.795	Valid
Continue Using	Q2	0.736	Valid	Users to Use	Q2	0.803	Valid
	Q3	0.720	Valid		Q3	0.854	Valid
2. Plan to	Q1	0.838	Valid	4. Motivation to	Q1	0.820	Valid
Continue Using in the Future	Q2	0.665	Valid	Provide Foodback	Q2	0.753	Valid
iii tile ruture	Q3	0.545	Valid	Feedback	Q3	0.835	Valid

B. Research Validity Test

Reliability testing in this study was conducted to assess the extent to which the instrument produces consistent results when used in repeated measurements. The reliability test was conducted using a Cronbach's Alpha value exceeding a minimum threshold of 0.6. This threshold was chosen based on the consideration that an a value \geq 0.6 is considered sufficient to demonstrate the internal consistency of the instrument in exploratory research or preliminary studies. The results shown in Table 3 for the validity test indicate that each variable in this study had a Cronbach's Alpha value above the specified value (> 0.6).

Based on the results of the reliability test, it shows that the instrument has good internal consistency, so it can be concluded that the instrument is reliable and suitable for use in the data collection process.


Table 3. Reliability Test Results

Variable	Reliability Coefficients	Alpha	Information
Perceived Ease of Use	12	0.774	Reliable
Perceived Usefulness	15	0.769	Reliable
Behavioral Intention	12	0.773	Reliable

C. Classical Assumption Test

1. Normality Test

The normality test in this study aims to determine whether the data used is normally distributed or not. In this study, the normality test uses a testing model by looking at the Probability Plot (P-Plot) graph with the provision that if the data points are spread around the diagonal line, then the data is normally distributed (Rani Das, 2016). The results of the data normality test as shown in Figure 1 for the pattern showing the distribution on the p-plot graph are known to spread around the diagonal line and this indicates that the data is normally distributed and can be continued to the next testing stage.

Gambar 1. Chart Probability Plot (P-Plot)

2. Multicollinearity Test

The multicollinearity test in this study was conducted to determine whether the proposed regression model contained any correlation between the independent variables. The tolerance and variance inflation factor (VIF) values were used as references in this study, with the tolerance value >0.1 and the VIF value <10 (Shrestha, 2020). The results shown in Table 4 indicate that the tolerance and VIF values in the regression model are below the specified values, and there is no correlation between the research variables. This is considered valid and can be continued to the next testing stage.

Table 4. Multicollinearity Test Results

Model	Collinearity Statistics		
	Tolerance	VIF	
1 (Constant)			
PEOU	0.991	1.009	
PU	0.991	1.009	
a. Dependent Variable: Behavior Inte	ention (Y)		

3. Heteroscedasticity Test

The heteroscedasticity test in this study was conducted to determine whether there was inequality in the variance of the residuals from one observation to another in the regression model. The heteroscedasticity test followed the Glejser test with a significance level of 5%. The results shown in Table 5 for the heteroscedasticity test revealed significant values for the variables Perceived Ease of Use (0.863) and Perceived Usefulness (0.850), both of which were greater than the 0.05 significance level. Therefore, it was concluded that there were no symptoms of heteroscedasticity.

Table 5. Heteroscedasticity Test Results

	Tuble 31 Heteroseedusticity Test Results					
	Variable	Significant	Result			
•	PEOU	0.863	No Heteroscedasticity Occurs			
_	PU	0.850	No Heteroscedasticity Occurs			

D. Hypothesis Testing

1. Multiple Linear Regression Test

Based on the results (see table 6) of multiple linear regression analysis, the following equation is obtained:

$$Y = 4,884 X1 + 0,111 X2 + 0,643 X3$$

Where:

 X_1 = Perceived ease of use

X₂ = Perceived Usefulness

Y = Behavioral Intention

The multiple linear regression equation above can be interpreted as follows:

- a. Constant (B = 4.884) If Perceived Ease of Use and Perceived Usefulness are both zero, then Behavioral Intention is estimated to be 4.884.
- b. Perceived Ease of Use: The coefficient B = 0.111 indicates that for every one-unit increase in Perceived Ease of Use, Behavioral Intention is estimated to decrease by 0.111, assuming Perceived Usefulness remains constant. However, the significance value for Perceived Ease of Use is 0.041 (less than 0.05), so the effect of Perceived Ease of Use on Behavioral Intention is significant.
- c. Perceived Usefulness: The coefficient B = 0.643 indicates that, assuming Perceived Ease of Use remains constant, for every one-unit increase in Perceived Usefulness, Behavioral Intention is estimated to increase by 0.643. The significance value of Perceived Usefulness is 0.000 (less than 0.05), so the influence of Perceived Usefulness on Behavioral Intention is significant.

Table 6. Results of Multiple Regression Analysis

Model			dardized icients	Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
1	(Constant)	4.884	3.313		1.474	0.144
	PEOU	0.111	.054	0.090	2.069	0.041
	PU	0.643	.031	0.895	20.554	0.000

a. Dependent Variable: Behavior Intention

2. Partial Test

To determine whether the independent variable influences the dependent variable, namely by seeing whether the calculated t > t table and the significance level < 0.05, it can be said that the independent variable partially influences the dependent variable positively and significantly. The t table value can be determined using the formula df = n - k - 1, where n is the number of samples and k is the number of model parameters. At a significance level of 0.05 with df = 96 - 2 - 1 - 93, the t table result is 1.661.

Table 7. Partial Analysis Test

Variable	t-count	t-table	Sig.	Alpha	Interpretation
PEOU (X1)	2.069	1.661	0.041	0.050	Positive and Significant
PU (X2)	20.554	1.661	0.000	0.050	Positive and Significant

Based on the data presented in Table 7, it can be concluded that Perceived Ease of Use has a positive and significant effect on Behavioral Intention. This can be seen from the results of the t-test which shows a t-count value of 2.069, greater than the t-table of 1.661, with a significance level (Sig.) of 0.041 which is smaller than the alpha value of 0.05 and this supports hypothesis one (**H1**). Furthermore, Perceived Usefulness has a positive and significant effect on Behavioral Intention, the results of the t-test show that the t-count value is 20.554, greater than the t-table of 1.661, and has a significance level (Sig.) of 0.000 which is smaller than the alpha value of 0.05 and this supports hypothesis two (**H2**). Both hypothetical variables (PEOU and PU) were found to have a positive and significant effect on the intention to accept payments using the QRIS method for users in Gorontalo City.

3. Simultaneous Test (F test)

To determine whether the independent variable simultaneously affects the dependent variable, the F test is performed by comparing the calculated F value and the F table. A regression model is said to be simultaneously significant if the calculated F is greater than the F table and the significance value is <0.05. The F table value is determined based on df = n - k - 1 (the number of samples minus the number of independent variables and one for the intercept). With a sample size of 96 and two independent variables, df = 96-2-1 = 93 is obtained. Therefore, at a significance level of 0.05 with df = 93, the F table value used is 3.09 as a comparison in decision making.

Table 8. Simultaneous Analysis Test

-						
	Variable	f-count	f-table	Sig.	Alpha	Interpretation
_	PEOU & PU	219.390	3.090	0.001	0.050	Significant

The results shown in table 8 for the results of the Joint Influence Test of Perceived Ease of Use (X1) and Perceived Usefulness (X2) have a significant influence on behavioral intention with a calculated f value of 219.390 which is greater than the f table of 3.09 and a significance level (Sig.) <0.001 which is smaller than alpha 0.05 and this supports hypothesis three (**H3**).

4. Determination Test (R²)

The coefficient of determination (R2) test aims to measure how much the independent variables can explain the variation in the dependent variable in a multiple linear regression model. In this study, the independent variables used are Perceived Ease of Use (X1) and Perceived Usefulness (X2), while the dependent variable is Behavioral Intention (Y).

Table 9. Determination Analysis Test

Model Summary Model R R Square Adjusted R Square Estimate 1 .857a .735 .726 1.34578

a. Predictors: (Constant), PEOU, PU, Behavioral Intention

Based on the Model Summary presented in Table 9, the following results were obtained:

- 1. R value = 0.908. This means that the relationship between the independent variables (Perceived Ease of Use and Perceived Usefulness) and the dependent variable, Behavioral Intention (Y), is strong.
- 2. R² = 0.825 means that 82.5% of the variation in Behavioral Intention (Y) can be explained by Perceived Ease of Use (X1) and Perceived Usefulness (X2). Meanwhile, the remaining 17.5% is influenced by other factors outside the model that were not included in this study.

3. Adjusted $R^2 = 0.821$. This provides a more accurate estimate of the predictor's ability to explain the dependent variable, as it takes into account the number of independent variables used in the model.

5. Discussion

Based on the results of the multiple linear regression analysis that has been conducted, it is known that the Perceived Ease of Use variable has a significant effect on the Behavioral Intention variable in the use of QRIS by the people of Gorontalo City. This is indicated by the calculated t value of 2.069, which is greater than the t table of 1.661. In addition, the significance value (Sig.) of 0.041, which is much smaller than alpha 0.05 and this supports hypothesis one. This finding is quite interesting because in theory, the concept of Perceived Ease of Use derived from the Technology Acceptance Model (TAM) states that the easier a technology is to use, the more likely a person is to intend to use it. In line with this, in this field research shows that QRIS is considered easy to use, this automatically increases the user's intention to use it. so that the ease factor is the main thing that influences their decision to use QRIS. Looking at the characteristics of the respondents, the data shows that of the 96 respondents, the majority came from the 18-25 age group, amounting to 65.6%, followed by the 26-40 age group at 27%. These ages are classified as productive age groups who are usually guite familiar with digital technology. Thus, respondents from this group may no longer need to consider ease of use when deciding to use technology such as QRIS, because they already have high digital literacy, according to Ramayanti, (2024) that the ease of use of QRIS technology for non-cash payment methods is often found among the millennial generation or Gen Z.

Furthermore, Perceived Usefulness has a very significant influence on the Behavioral Intention variable in the use of QRIS by the people of Gorontalo City. This is evidenced by the calculated t value of 20.554, which is greater than the t table of 1.661. In addition, the significance value (Sig.) of 0.000, which is smaller than the alpha value of 0.05 and this supports hypothesis two. Conceptually, Perceived Usefulness refers to the extent to which a person believes that using a system will improve their performance. In this context, the more a person feels that QRIS provides real benefits, such as speeding up transactions, reducing the need to carry cash, or providing security and convenience in transactions, the higher their intention to continue using QRIS. When associated with the demographic data of respondents, it appears that the majority of respondents in this study were students (44.79%), followed by entrepreneurs (29.27%) and civil servants (19.79%). These groups are economically and socially active and frequently engage in various types of transactions, both for personal and professional purposes. Therefore, they tend to seek practical, fast, and efficient payment solutions. Moghavvemi et al., (2021) indicate that the biggest drivers of digital payments are convenience, security, and speed.

Finally, simultaneous testing is carried out to determine how much influence Perceived Ease of Use (X1) and Perceived Usefulness (X2) have on Behavioral Intention (Y) in the use of QRIS by the people of Gorontalo City and the test results show that both independent variables simultaneously have a significant influence on the dependent variable. This study indicates that partially Perceived Ease of Use and Perceived Usefulness show a significant influence on Behavioral Intention. both have a meaningful contribution in influencing the behavioral intentions of QRIS users and the success of QRIS implementation is highly dependent on how these two aspects are perceived by users. Therefore, efforts to educate, promote, and improve the QRIS system should focus on increasing the perception of benefits and ensuring that this technology remains easy and comfortable to use by all reference groups.

6. Conclusion

Based on the research findings, it can be concluded that both perceived ease of use and perceived usefulness have been shown to significantly and positively influence the behavioral intention of QRIS users in Gorontalo City. This finding confirms the main postulate in the Technology Acceptance Model (TAM) that people's intention to adopt a technology is jointly determined by their belief in the technology's ease of use and its benefits. Consequently, the successful adoption and continued use of QRIS in Gorontalo City depends heavily on the system's ability to not only be perceived as practical and uncomplicated in operation, but also to provide tangible benefits, such as efficiency and profitability, in transactions. Therefore, future QRIS socialization and development strategies must simultaneously emphasize these two aspects to further strengthen user intention and loyalty.

The Influence of Perceived Ease of Use and Perceived Usefulness on the Behavioral ... @Muhammad., Asnawi., & Niode.

Although this study successfully demonstrated that perceived ease of use and perceived usefulness significantly influence behavioral intention, these findings have several limitations. First, the study's scope, limited to Gorontalo City, means the results cannot necessarily be generalized to other regions in Indonesia, which have different socio-cultural characteristics and levels of technology adoption. Second, this research model only tested two belief variables from the Technology Acceptance Model (TAM) and may have overlooked other factors that also play an important role, such as social influence, facilitating conditions, or even security and trust, which are among the stronger determinants in the context of digital payment systems. Third, the cross-sectional approach used, which only describes the relationship between variables at a single point in time, cannot capture the dynamics of changes in user perceptions and intentions over time. Therefore, interpretation of the results and implications of this study must take these limitations into account.

Based on the findings confirming the significant influence of perceived ease of use and perceived usefulness on intention to use, the main practical implication for QRIS providers, banks, and the Gorontalo City government is the need for communication and education strategies that simultaneously emphasize these two core values. Therefore, it is recommended that socialization campaigns focus not only on disseminating information about the benefits of QRIS, such as practicality, speed, and attractive promotions, but also aggressively demonstrate its ease of use through simple visual tutorials and direct assistance, especially for the MSME segment and the elderly. Furthermore, relevant parties are advised to continue simplifying the application interface and ensuring a highly smooth transaction process, as this combination of concrete benefits and a seamless user experience will be most effective in strengthening the intention of the Gorontalo community to adopt QRIS sustainably.

Acknowledgments

-

References

- 1. Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived Usefulness, Ease of Use, and Usage of Information Technology: A Replication. *MIS Quarterly*, *16*(2), 227. https://doi.org/10.2307/249577
- Ahmad, S., & Abdul Latif, A. A. (2022). Controvesy Surrounding The Benefits of The E-Wallet Application Software. *International Journal of Academic Research in Business and Social Sciences*, 12(9), Pages 1893-1904. https://doi.org/10.6007/IJARBSS/v12-i9/14736
- 3. Ajzen, I. (2020). The theory of planned behavior: Frequently asked questions. *Human Behavior and Emerging Technologies*, *2*(4), 314–324. https://doi.org/10.1002/hbe2.195
- 4. Alkhwaldi, A. F., & Abdulmuhsin, A. A. (2022). Understanding User Acceptance of IoT Based Healthcare in Jordan: Integration of the TTF and TAM. In S. G. Yaseen (Ed.), *Digital Economy, Business Analytics, and Big Data Analytics Applications* (Vol. 1010, pp. 191–213). Springer International Publishing. https://doi.org/10.1007/978-3-031-05258-3_17
- Bhattacherjee & Premkumar. (2004). Understanding Changes in Belief and Attitude toward Information Technology Usage: A Theoretical Model and Longitudinal Test. MIS Quarterly, 28(2), 229. https://doi.org/10.2307/25148634
- Carlos Martins Rodrigues Pinho, J., & Soares, A. M. (2011). Examining the technology acceptance model in the adoption of social networks. *Journal of Research in Interactive Marketing*, 5(2/3), 116–129. https://doi.org/10.1108/17505931111187767
- 7. Davis, F. D. (1993). User acceptance of information technology: System characteristics, user perceptions and behavioral impacts. *International Journal of Man-Machine Studies*, *38*(3), 475–487. https://doi.org/10.1006/imms.1993.1022
- 8. Gangwar, H., Date, H., & Raoot, A. D. (2014). Review on IT adoption: Insights from recent technologies. *Journal of Enterprise Information Management*, *27*(4), 488–502. https://doi.org/10.1108/JEIM-08-2012-0047
- 9. Gefen, D., Straub, D., & Georgia State University. (2000). The Relative Importance of Perceived Ease of Use in IS Adoption: A Study of E-Commerce Adoption. *Journal of the Association for Information Systems*, *1*(1), 1–30. https://doi.org/10.17705/1jais.00008

- 10. Gupta, P., Zhang, F., Chauhan, S., Goyal, S., Bhardwaj, A. K., & Gajpal, Y. (2024). Understanding small and medium enterprises' behavioral intention to adopt social commerce: A perceived value perspective. *Journal of Enterprise Information Management*, *37*(3), 959–992. https://doi.org/10.1108/JEIM-09-2022-0356
- 11. HM, A. H., Pakaja, F., & Zainurrofiq, A. (2023). Analysis of Factors Influencing FinTech Adoption by Students of Information Systems. *American Journal of Multidisciplinary Research and Development*, *5*(9), 06–21.
- 12. Isiaku, L., & Adalier, A. (2024). Determinants of business intelligence systems adoption in Nigerian banks: The role of perceived usefulness and ease of use. *Information Development*, 02666669241307024. https://doi.org/10.1177/02666669241307024
- 13. Jameaba, M. (2020). Digitization, FinTech Disruption, and Financial Stability: The Case of the Indonesian Banking Sector. *SSRN Electronic Journal*. https://doi.org/10.2139/ssrn.3529924
- 14. Karahanna, E., & Straub, D. W. (1999). The psychological origins of perceived usefulness and ease-of-use. *Information & Management*, *35*(4), 237–250. https://doi.org/10.1016/S0378-7206(98)00096-2
- 15. Kredina, A. (2021). Transformation of Fintech: Impact of POS and ATM on Non-Cash Payments. *Eurasian Journal of Economic and Business Studies*, *2*(60). https://doi.org/10.47703/ejebs.v2i60.51
- 16. Kumar, R. L., Smith, M. A., & Bannerjee, S. (2004). User interface features influencing overall ease of use and personalization. *Information & Management*, 41(3), 289–302. https://doi.org/10.1016/S0378-7206(03)00075-2
- 17. Lederer, A. L., Maupin, D. J., Sena, M. P., & Zhuang, Y. (2000). The technology acceptance model and the World Wide Web. *Decision Support Systems*, *29*(3), 269–282. https://doi.org/10.1016/S0167-9236(00)00076-2
- 18. Moghavvemi, S., Mei, T. X., Phoong, S. W., & Phoong, S. Y. (2021). Drivers and barriers of mobile payment adoption: Malaysian merchants' perspective. *Journal of Retailing and Consumer Services*, *59*, 102364. https://doi.org/10.1016/j.jretconser.2020.102364
- 19. Mugo, D., Njagi, K., Chemwei, B., & Motanya, J. (2017). The Technology Acceptance Model (TAM) and its Application to the Utilization of Mobile Learning Technologies. *British Journal of Mathematics & Computer Science*, 20(4), 1–8. https://doi.org/10.9734/BJMCS/2017/29015
- 20. Nabila, A. P., Raharso, S., & Tiorida, E. (2025). The Influence of Trust and Transaction Security on Interest in Using The QRIS Payment System: Study: QRIS Users in Bandung City. *Airlangga Journal of Innovation Management*, 6(2), 248–260. https://doi.org/10.20473/ajim.v6i2.72597
- 21. Nada, D. Q., Suryaningsum, S., & Negara, H. K. S. (2021). Digitalization of the Quick Response Indonesian Standard (QRIS) Payment System for MSME Development. *Journal of International Conference Proceedings, 4*(3). https://doi.org/10.32535/jicp.v4i3.1358
- 22. Nandru, P., S.A., S. K., & Chendragiri, M. (2024). Adoption intention of mobile QR code payment system among marginalized street vendors: An empirical investigation from an emerging economy. *Journal of Science and Technology Policy Management*, *15*(6), 1709–1733. https://doi.org/10.1108/JSTPM-03-2023-0035
- 23. Ngan, N. T., & Khoi, B. H. (2020). Behavioral Intention to Accept and Use Banking Service. *The Journal of Asian Finance, Economics and Business, 7*(11), 393–400. https://doi.org/10.13106/JAFEB.2020.VOL7.NO11.393
- 24. Nisa, S., & Adinugraha, H. H. (2024). The Effectiveness of the Implementation of the Quick Response Code Indonesia Standard (QRIS) Payment System for MSMEs. *Journal of Economics, Management, Accounting and Computer Applications, 1*(1), 34–39. https://doi.org/10.69693/jemaca.v1i1.5
- 25. Omar, N., Munir, Z. A., Kaizan, F. Q., Noranee, S., & Malik, S. A. (2019). The Impact of Employees Motivation, Perceived Usefulness and Perceived Ease of Use on Employee Performance among Selected Public Sector Employees. *International Journal of Academic Research in Business and Social Sciences*, *9*(6), Pages 1128-1139. https://doi.org/10.6007/IJARBSS/v9-i6/6074
- 26. Pakaja, F. (2025). Overconfidence Bias Measures and Herd Behavior on Information System Security. *Journal of Computer Information Systems*, 1–17. https://doi.org/10.1080/08874417.2025.2507707
- 27. Pakaja, F., & Wafa, M. (2023). Social family, parental involvement and intentions: Predicting the technology acceptance and interest students learning online. *Interactive Learning Environments*, *31*(8), 5331–5346. https://doi.org/10.1080/10494820.2021.2005105

- 28. Rafferty, N. E., & Fajar, A. N. (2022). Integrated QR Payment System (QRIS): Cashless Payment Solution in Developing Country from Merchant Perspective. *Asia Pacific Journal of Information Systems*, *32*(3), 630–655. https://doi.org/10.14329/apjis.2022.32.3.630
- 29. Rahmalia, W., Majid, M. S. Abd., Halim, H., Agustina, M., Sabila, S., & Hafidzah, F. M. (2024). The Effects of Perceived Benefits and Ease of Use on the Reuse Intention of Islamic Banking QRIS through Satisfaction Among Culinary MSMEs: Does Fintech Literacy play a role? *2024 International Conference on Sustainable Islamic Business and Finance (SIBF)*, 268–273. https://doi.org/10.1109/SIBF63788.2024.10883866
- 30. Ramayanti, R. (2024). Understanding User Perceptions of QRIS in Indonesia: Exploring the Impact of Perceived Usefulness, Ease of Use, and Demographic Factors. *International Journal of Finance & Banking Studies (2147-4486), 13*(4), 90–99. https://doi.org/10.20525/ijfbs.v13i4.3887
- 31. Rani Das, K. (2016). A Brief Review of Tests for Normality. *American Journal of Theoretical and Applied Statistics*, 5(1), 5. https://doi.org/10.11648/j.ajtas.20160501.12
- 32. Setiawan, A. D., Rahman, I., Hidayatno, A., & Zelin, A. D. E. (2019). Modeling Adoption of Electronic Money in Indonesia: Conceptual Approach for Less Cash Society Development. *Proceedings of the 2019 5th International Conference on Industrial and Business Engineering*, 370–373. https://doi.org/10.1145/3364335.3364398
- 33. Shrestha, N. (2020). Detecting Multicollinearity in Regression Analysis. *American Journal of Applied Mathematics and Statistics*, 8(2), 39–42. https://doi.org/10.12691/ajams-8-2-1
- 34. Srivastava, S., & Singh, N. (2023). An integrated model predicting customers' continuance behavioral intention and recommendations of users: A study on mobile payment in emerging markets. *Journal of Financial Services Marketing*, *28*(2), 236–254. https://doi.org/10.1057/s41264-022-00147-y
- 35. Sun, J. (2012). Why different people prefer different systems for different tasks: An activity perspective on technology adoption in a dynamic user environment. *Journal of the American Society for Information Science and Technology*, *63*(1), 48–63. https://doi.org/10.1002/asi.21670
- 36. Susilo, J. (2024). Cooperation in Digital Innovation Under the Master Plan on Asean Community (MPAC) in Muslim Asean Countries. *Airlangga Journal of Innovation Management*, *5*(1), 107–125. https://doi.org/10.20473/ajim.v5i1.54332
- 37. Taherdoost, H. (2018). A review of technology acceptance and adoption models and theories. *Procedia Manufacturing*, *22*, 960–967. https://doi.org/10.1016/j.promfg.2018.03.137
- 38. Tanha, M., Dolon, Md. M. A., Al-Amin, A.-A., Nadi, N. A., Islam, Md. M., & Ali, Md. H. (2024). Factors influencing the development of the cashless payment system: Comprehending the function of the involved participants. *Annals of Management and Organization Research*, *5*(4), 255–270. https://doi.org/10.35912/amor.v5i4.1959
- 39. Thalib, R. R., Machmud, R., & Isa, R. A. (2025). The Effect of Price, Promotion and E-Service Through The McDonald's Application On Consumer Buying Interest. *International Journal of Multidisciplinary Applied and Science Research*, *01*(03), 115–124.
- 40. Uzun, E., Yıldırım, A., & Özden, M. (2013). tudents' Perceptions About Learning Environment of a Distance Course Based on Technology Acceptance Model: A Descriptive Study. *Mersin Üniversitesi Eğitim Fakültesi Dergisi*, *9*(1), 201–211.
- 41. Xia, M., Zhang, Y., & Zhang, C. (2018). A TAM-based approach to explore the effect of online experience on destination image: A smartphone user's perspective. *Journal of Destination Marketing & Management*, 8, 259–270. https://doi.org/10.1016/j.jdmm.2017.05.002
- 42. Zulfa, D., & Syahnur, S. (2025). The dynamic effect of cash and non-cash payment instruments on money velocity in Indonesia. *Economic Journal of Emerging Markets*, 57–69. https://doi.org/10.20885/ejem.vol17.iss1.art5