Chat Bot News Analysis to Support Education Services Using Neural Network
Keywords:
Chat Bot, Educational Services, Neural Network, Online NewsAbstract
During the Covid-19 pandemic, all learning is held online, so all lecture activities up to student administration must be done online. To make it easier for students to obtain information about academics and administration, a chatbot feature is needed which can provide information while communicating two-way to students as users. Chatbots can provide services practically, quickly, and responsively. In order for the chatbot to provide answers that match user expectations, the question sentences that enter the system must be classified properly and correctly. This study applies the Neural Network method to classify answers on chatbots. Neural Networks are used in research methods because they can build models easily and can be used to classify text with a high level of accuracy. To measure the performance of the chatbot system in providing appropriate answers, an evaluation is carried out by calculating the accuracy, precision, recall, and f-measuring values using a confusion matrix. The results of the study show that the Neural Network method built on the chatbot system in classifying answers can run well with an accuracy value of 99.21%, precision of 88.09%, recall of 88.09%, and f-measure of 88.09%.
References
1. Adamopoulou, E., & Moussiades, L. (2020). Chatbots: History, technology, and applications. Machine Learning with Applications, 2, 100006. https://doi.org/10.1016/j.mlwa.2020.100006.
2. Adel, K., Elhakeem, A., & Marzouk, M. (2022). Chatbot for construction firms using scalable blockchain network. Automation in Construction, 141, 104390.
3. Allouch, M., Azaria, A., & Azoulay, R. (2021). Conversational agents: Goals, technologies, vision and challenges. Sensors, 21(24), 8448.
4. Batish, R. (2018). Voicebot and Chatbot Design: Flexible Conversational Interfaces with Amazon Alexa, Google Home, and Facebook Messenger. Packt Publishing Ltd.
5. Bhartiya, N., Jangid, N., Jannu, S., Shukla, P., & Chapaneri, R. (2019). Artificial Neural Network Based University Chatbot System. 1–6.
6. Buhalis, D., & Cheng, E. S. Y. (2020). Exploring the use of chatbots in hotels: technology providers’ perspective. In Information and Communication Technologies in Tourism 2020: Proceedings of the International Conference in Surrey, United Kingdom, January 08–10, 2020 (pp. 231-242). Springer International Publishing.
7. Chen, J. S., Le, T. T. Y., & Florence, D. (2021). Usability and responsiveness of artificial intelligence chatbot on online customer experience in e-retailing. International Journal of Retail and Distribution Management, 49(11), 1512–1531. https://doi.org/10.1108/IJRDM-08-2020-0312.
8. Fanni, S. C., Febi, M., Aghakhanyan, G., & Neri, E. (2023). Natural language processing. In Introduction to Artificial Intelligence (pp. 87-99). Cham: Springer International Publishing.
9. Gorunescu, F. (2011). Data Mining Concepts, Models and Techniques. In Springer-Verlag Berlin Heidelberg (Vol. 59).
10. Haristiani, N. U. R. I. A., Danuwijaya, A. A., Rifai, M. M., & Sarila, H. (2019). Gengobot: A chatbot-based grammar application on mobile instant messaging as language learning medium. Journal of Engineering Science and Technology, 14(6), 3158-3173.
11. Haugeland, I. K. F., Følstad, A., Taylor, C., & Bjørkli, C. A. (2022). Understanding the user experience of customer service chatbots: An experimental study of chatbot interaction design. International Journal of Human-Computer Studies, 161, 102788.
12. Hirschberg, J., & Manning, C. D. (2015). Advances in natural language processing. Science, 349(6245), 261-266.
13. Husamuddin, H., Prasetyo, D. B., & Rustamadji, H. C. (2020). Otomatisasi Layanan Frequently Ask Questions Berbasis Natural Langugae Processing Pada Telegram Bot. In TELEMATIKA (Vol. 17, Issue 2).
14. Kuhail, M. A., Alturki, N., Alramlawi, S., & Alhejori, K. (2023). Interacting with educational chatbots: A systematic review. Education and Information Technologies, 28(1), 973-1018.
15. Malik, R., Shrama, A., Trivedi, S., & Mishra, R. (2021). Adoption of chatbots for learning among university students: Role of perceived convenience and enhanced performance. International Journal of Emerging Technologies in Learning (iJET), 16(18), 200-212.
16. Markoulidakis, I., Rallis, I., Georgoulas, I., Kopsiaftis, G., Doulamis, A., & Doulamis, N. (2021). Multiclass Confusion Matrix Reduction Method and Its Application on Net Promoter Score Classification Problem. Technologies, 9(4), 81. https://doi.org/10.3390/technologies9040081.
17. Mincheva, Z., Vasilev, N., Antonov, A., & Nikolov, V. (2022, July). Natural Language Processing Using Database Context. In Science and Information Conference (pp. 747-759). Cham: Springer International Publishing.
18. Nasar, Z., Jaffry, S. W., & Malik, M. K. (2019). Textual keyword extraction and summarization: State-of-the-art. Information Processing & Management, 56(6), 102088.
19. Nuruzzaman, M., & Hussain, O. K. (2020). IntelliBot: A Dialogue-based chatbot for the insurance industry. Knowledge-Based Systems, 196. https://doi.org/10.1016/j.knosys.2020.105810.
20. Piro, L. (2019). A visual framework for the end-user development of conversational agents for data exploration.
21. Prasetyo, V. R., Benarkah, N., & Chrisintha, V. J. (2021). Implementasi Natural Language Processing Dalam Pembuatan Chatbot Pada Program Information Technology Universitas Surabaya. Teknika, 10(2), 114–121. https://doi.org/10.34148/teknika.v10i2.370.
22. Ranoliya, B. R., Raghuwanshi, N., & Singh, S. (2017, September). Chatbot for university related FAQs. In 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 1525-1530). IEEE.
23. Rapp, A., Curti, L., & Boldi, A. (2021). The human side of human-chatbot interaction: A systematic literature review of ten years of research on text-based chatbots. International Journal of Human-Computer Studies, 151, 102630.
24. Selamat, M. A., & Windasari, N. A. (2021). Chatbot for SMEs: Integrating customer and business owner perspectives. Technology in Society, 66, 101685.
25. Sharma, G., & Sharma, D. (2022). Automatic text summarization methods: A comprehensive review. SN Computer Science, 4(1), 33.
26. Shumanov, M., & Johnson, L. (2021). Making conversations with chatbots more personalized. Computers in Human Behavior, 117. https://doi.org/10.1016/j.chb.2020.106627.
27. Smutny, P., & Schreiberova, P. (2020). Chatbots for learning: A review of educational chatbots for the Facebook Messenger. Computers & Education, 151, 103862.
28. Suhaili, S. M., Salim, N., & Jambli, M. N. (2021). Service chatbots: A systematic review. Expert Systems with Applications, 184, 115461.
29. Suta, P., Lan, X., Wu, B., Mongkolnam, P., & Chan, J. H. (2020). An overview of machine learning in chatbots. International Journal of Mechanical Engineering and Robotics Research, 9(4), 502-510.
30. Zumstein, D., & Hundertmark, S. (2017). Chatbots--An Interactive Technology For Personalized Communication, Transactions and Services. IADIS International Journal on WWW/Internet, 15(1).
31. Zohuri, B., & Rahmani, F. M. (2023). ChatGPT vs Chatbots Unleashing the Power of Conversational AI. Journal of Material Sciences & Manufacturing Research. SRC/JMSMR-188. DOI: doi. org/10.47363/JMSMR/2023 (4), 158, 2-5

